Stochastic Energetics [electronic resource] / by Ken Sekimoto.

By: Sekimoto, Ken [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Physics ; 799Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Description: XII, 300p. 94 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642054112Subject(s): Physics | Chemistry | Thermodynamics | Physics | Semiconductors | Single Molecule Studies, Molecular Motors | Statistical Physics, Dynamical Systems and Complexity | Thermodynamics | Theoretical and Computational ChemistryAdditional physical formats: Printed edition:: No titleDDC classification: 537.622 LOC classification: QC610.9-611.8Online resources: Click here to access online
Contents:
Background of the energetics of stochastic processes -- Physics of Langevin Equation -- Structure of Macroscopic Thermodynamics -- Fluctuations in Chemical Reactions -- Basics of Stochastic Energetics -- Concept of Heat on Mesoscopic Scales -- Work on the Mesoscopic Systems -- Heat Viewed at Different Scales -- Applications of Stochastic Energetics -- Control and Energetics -- Free-Energy Transducers.
In: Springer eBooksSummary: Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK2897

Background of the energetics of stochastic processes -- Physics of Langevin Equation -- Structure of Macroscopic Thermodynamics -- Fluctuations in Chemical Reactions -- Basics of Stochastic Energetics -- Concept of Heat on Mesoscopic Scales -- Work on the Mesoscopic Systems -- Heat Viewed at Different Scales -- Applications of Stochastic Energetics -- Control and Energetics -- Free-Energy Transducers.

Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha