FPF Ring Theory : Faithful Modules and Generators of Mod-R / Carl Faith, Stanley Page.

By: Faith, Carl [author.]Contributor(s): Page, Stanley [author.]Material type: TextTextSeries: London Mathematical Society Lecture Note Series ; no. 88Publisher: Cambridge : Cambridge University Press, 1984Description: 1 online resource (176 pages) : digital, PDF file(s)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511721250 (ebook)Subject(s): FPF rings | Associative rings | Modules (Algebra) | Categories (Mathematics)Additional physical formats: Print version: : No titleDDC classification: 512/.4 LOC classification: QA251.5 | .F35 1984Online resources: Click here to access online Summary: This is the first book on the subject of FPF rings and the systematic use of the notion of the generator of the category mod-R of all right R-modules and its relationship to faithful modules. This carries out the program, explicit of inherent, in the work of G Azumaya, H. Bass, R. Dedekind, S. Endo, I. Kaplansky, K. Morita, T. Nakayama, R. Thrall, and more recently, W. Brandal, R. Pierce, T. Shores, R. and S. Wiegand and P. Vamos, among others. FPF rings include quasi-Frobenius rings (and thus finite rings over fields), pseudo-Frobenius (PF) rings (and thus injective cogenerator rings), bounded Dedekind prime rings and the following commutative rings; self-injective rings, Prufer rings, all rings over which every finitely generated module decomposes into a direct sum of cyclic modules (=FGC rings), and hence almost maximal valuation rings. Any product (finite or infinite) of commutative or self-basic PFP rings is FPF. A number of important classes of FPF rings are completely characterised including semiprime Neotherian, semiperfect Neotherian, perfect nonsingular prime, regular and self-injective rings. Finite group rings over PF or commutative injective rings are FPF. This work is the culmination of a decade of research and writing by the authors and includes all known theorems on the subject of noncommutative FPF rings. This book will be of interest to professional mathematicians, especially those with an interest in noncommutative ring theory and module theory.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK12171

Title from publisher's bibliographic system (viewed on 16 Oct 2015).

This is the first book on the subject of FPF rings and the systematic use of the notion of the generator of the category mod-R of all right R-modules and its relationship to faithful modules. This carries out the program, explicit of inherent, in the work of G Azumaya, H. Bass, R. Dedekind, S. Endo, I. Kaplansky, K. Morita, T. Nakayama, R. Thrall, and more recently, W. Brandal, R. Pierce, T. Shores, R. and S. Wiegand and P. Vamos, among others. FPF rings include quasi-Frobenius rings (and thus finite rings over fields), pseudo-Frobenius (PF) rings (and thus injective cogenerator rings), bounded Dedekind prime rings and the following commutative rings; self-injective rings, Prufer rings, all rings over which every finitely generated module decomposes into a direct sum of cyclic modules (=FGC rings), and hence almost maximal valuation rings. Any product (finite or infinite) of commutative or self-basic PFP rings is FPF. A number of important classes of FPF rings are completely characterised including semiprime Neotherian, semiperfect Neotherian, perfect nonsingular prime, regular and self-injective rings. Finite group rings over PF or commutative injective rings are FPF. This work is the culmination of a decade of research and writing by the authors and includes all known theorems on the subject of noncommutative FPF rings. This book will be of interest to professional mathematicians, especially those with an interest in noncommutative ring theory and module theory.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha