Probability Theory of Classical Euclidean Optimization Problems [electronic resource] / by Joseph E. Yukich.

By: Yukich, Joseph E [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1675Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 1998Description: X, 154 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540696278Subject(s): Mathematics | Distribution (Probability theory) | Mathematics | Probability Theory and Stochastic ProcessesAdditional physical formats: Printed edition:: No titleDDC classification: 519.2 LOC classification: QA273.A1-274.9QA274-274.9Online resources: Click here to access online
Contents:
Subadditivity and superadditivity -- Subadditive and superadditive euclidean functionals -- Asymptotics for euclidean functionals: The uniform case -- Rates of convergence and heuristics -- Isoperimetry and concentration inequalities -- Umbrella theorems for euclidean functionals -- Applications and examples -- Minimal triangulations -- Geometric location problems -- Worst case growth rates.
In: Springer eBooksSummary: This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK1817

Subadditivity and superadditivity -- Subadditive and superadditive euclidean functionals -- Asymptotics for euclidean functionals: The uniform case -- Rates of convergence and heuristics -- Isoperimetry and concentration inequalities -- Umbrella theorems for euclidean functionals -- Applications and examples -- Minimal triangulations -- Geometric location problems -- Worst case growth rates.

This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha