Mathematical Foundation of Turbulent Viscous Flows [electronic resource] : Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, SEptember 1-5, 2003 / edited by Marco Cannone, Tetsuro Miyakawa.

Contributor(s): Cannone, Marco [editor.] | Miyakawa, Tetsuro [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1871Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Description: IX, 264 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540324546Subject(s): Mathematics | Differential equations, partial | Mathematics | Partial Differential EquationsAdditional physical formats: Printed edition:: No titleDDC classification: 515.353 LOC classification: QA370-380Online resources: Click here to access online In: Springer eBooksSummary: Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis theory of fluid equations. He discusses the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving the compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK36

Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis theory of fluid equations. He discusses the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving the compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha