Nonequilibrium many-body theory of quantum systems a modern introduction

By: Stefanucci, GianlucaContributor(s): Leeuwen, Robert vanMaterial type: TextTextLanguage: English Publication details: Cambridge Cambridge University Press 2013Description: 600p illustrationsISBN: 9780521766173 (HB)Subject(s): Green's functions | Many-body problem | Quantum theory | SCIENCE / Physics | PhysicsOnline resources: Click here to access online
Contents:
Machine generated contents note: Preface; 1. Second quantization; 2. Getting familiar with second quantization: model Hamiltonians; 3. Time-dependent problems and equations of motion; 4. The contour idea; 5. Many-particle Green's functions; 6. One-particle Green's function; 7. Mean field approximations; 8. Conserving approximations: two-particle Green's function; 9. Conserving approximations: self-energy; 10. MBPT for the Green's function; 11. MBPT and variational principles for the grand potential; 12. MBPT for the two-particle Green's function; 13. Applications of MBPT to equilibrium problems; 14. Linear response theory: preliminaries; 15. Linear response theory: many-body formulation; 16. Applications of MBPT to nonequilibrium problems; Appendices; Index.
Summary: "The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"--
Item type: BOOKS List(s) this item appears in: New Arrivals (7 November 2022)
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified Copy number Status Date due Barcode
IMSc Library
IMSc Library
530.145 STE (Browse shelf (Opens below)) 2 Available 76490

Includes bibliographical references and index.

Machine generated contents note: Preface; 1. Second quantization; 2. Getting familiar with second quantization: model Hamiltonians; 3. Time-dependent problems and equations of motion; 4. The contour idea; 5. Many-particle Green's functions; 6. One-particle Green's function; 7. Mean field approximations; 8. Conserving approximations: two-particle Green's function; 9. Conserving approximations: self-energy; 10. MBPT for the Green's function; 11. MBPT and variational principles for the grand potential; 12. MBPT for the two-particle Green's function; 13. Applications of MBPT to equilibrium problems; 14. Linear response theory: preliminaries; 15. Linear response theory: many-body formulation; 16. Applications of MBPT to nonequilibrium problems; Appendices; Index.

"The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"--

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha