Two-Dimensional Homotopy and Combinatorial Group Theory / Edited by Cynthia Hog-Angeloni, Wolfgang Metzler, Allan J. Sieradski.
Material type: TextSeries: London Mathematical Society Lecture Note Series ; no. 197Publisher: Cambridge : Cambridge University Press, 1993Description: 1 online resource (428 pages) : digital, PDF file(s)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511629358 (ebook)Other title: Two-Dimensional Homotopy & Combinatorial Group TheorySubject(s): Homotopy theory | Combinatorial group theory | Low-dimensional topology | Algebraic topologyAdditional physical formats: Print version: : No titleDDC classification: 514/.24 LOC classification: QA612.7 | .T96 1993Online resources: Click here to access online Summary: Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.Current library | Home library | Call number | Materials specified | URL | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
IMSc Library | IMSc Library | Link to resource | Available | EBK12196 |
Title from publisher's bibliographic system (viewed on 16 Oct 2015).
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.
There are no comments on this title.