A Geometric Approach to Homology Theory / S. Buonchristiano, C. P. Rourke, B. J. Sanderson.
Material type: TextSeries: London Mathematical Society Lecture Note Series ; no. 18Publisher: Cambridge : Cambridge University Press, 1976Description: 1 online resource (156 pages) : digital, PDF file(s)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511662669 (ebook)Subject(s): Homology theory | Cobordism theoryAdditional physical formats: Print version: : No titleDDC classification: 514/.23 LOC classification: QA611 | .B85Online resources: Click here to access online Summary: The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory.Current library | Home library | Call number | Materials specified | URL | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
IMSc Library | IMSc Library | Link to resource | Available | EBK12036 |
Title from publisher's bibliographic system (viewed on 16 Oct 2015).
The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory.
There are no comments on this title.