Computational Materials Science [electronic resource] : From Basic Principles to Material Properties / edited by W. Hergert, M. Däne, A. Ernst.

Contributor(s): Hergert, W [editor.] | Däne, M [editor.] | Ernst, A [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Physics ; 642Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2004Description: XVI, 320 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540399155Subject(s): Physics | Mathematical physics | Condensed matter | Surfaces (Physics) | Physics | Condensed Matter | Characterization and Evaluation of Materials | Mathematical and Computational Physics | Physics and Applied Physics in EngineeringAdditional physical formats: Printed edition:: No titleDDC classification: 530.41 LOC classification: QC173.45-173.458Online resources: Click here to access online
Contents:
Introduction -- Density Functional Theory and the Full-Potential Local-Orbital Approach -- Methods for Band Structure Calculations in Solids -- A Solid-State Theoretical Approach to the Optical Properties of Photonic Crystals -- Simulation of Active and Nonlinear Photonic Nanomaterials in the Finite-Difference Time-Domain Framework -- Symmetry Properties of Electronic and Photonic Band Structures -- From the Cluster to the Liquid: Ab initio Calculations on Realistic Systems Based on First-Principles Molecular Dynamics -- Magnetism, Structure and Interactions at the Atomic Scale -- Present-Day Achievements of Molecular Dynamics Simulations -- Computational Materials Science with 'Materials Studio': Applications in Catalysis -- Integration of Modelling at Various Length and Time Scales -- Simulation of Material Behaviour from the Engineering Viewpoint - Classical Approaches and New Trends -- Parallel Implementation Strategies for Algorithms from Scientific Computing -- Multi-Grid Methods - An Introduction.
In: Springer eBooksSummary: Computational Physics is now a discipline in its own right, comparable with theoretical and experimental physics. Computational Materials Science concentrates on the calculation of materials properties starting from microscopic theories. It has become a powerful tool in industrial research for designing new materials, modifying materials properties and optimizing chemical processes. This book focusses on the application of computational methods in new fields of research, such as nanotechnology, spintronics and photonics, which will provide the foundation for important technological advances in the future. Methods such as electronic structure calculations, molecular dynamics simulations and beyond are presented, the discussion extending from the basics to the latest applications.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK2393

Introduction -- Density Functional Theory and the Full-Potential Local-Orbital Approach -- Methods for Band Structure Calculations in Solids -- A Solid-State Theoretical Approach to the Optical Properties of Photonic Crystals -- Simulation of Active and Nonlinear Photonic Nanomaterials in the Finite-Difference Time-Domain Framework -- Symmetry Properties of Electronic and Photonic Band Structures -- From the Cluster to the Liquid: Ab initio Calculations on Realistic Systems Based on First-Principles Molecular Dynamics -- Magnetism, Structure and Interactions at the Atomic Scale -- Present-Day Achievements of Molecular Dynamics Simulations -- Computational Materials Science with 'Materials Studio': Applications in Catalysis -- Integration of Modelling at Various Length and Time Scales -- Simulation of Material Behaviour from the Engineering Viewpoint - Classical Approaches and New Trends -- Parallel Implementation Strategies for Algorithms from Scientific Computing -- Multi-Grid Methods - An Introduction.

Computational Physics is now a discipline in its own right, comparable with theoretical and experimental physics. Computational Materials Science concentrates on the calculation of materials properties starting from microscopic theories. It has become a powerful tool in industrial research for designing new materials, modifying materials properties and optimizing chemical processes. This book focusses on the application of computational methods in new fields of research, such as nanotechnology, spintronics and photonics, which will provide the foundation for important technological advances in the future. Methods such as electronic structure calculations, molecular dynamics simulations and beyond are presented, the discussion extending from the basics to the latest applications.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha