Guts of Surfaces and the Colored Jones Polynomial [electronic resource] / by David Futer, Efstratia Kalfagianni, Jessica Purcell.

By: Futer, David [author.]Contributor(s): Kalfagianni, Efstratia [author.] | Purcell, Jessica [author.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 2069Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: X, 170 p. 62 illus., 45 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642333026Subject(s): Mathematics | Cell aggregation -- Mathematics | Mathematics | Manifolds and Cell Complexes (incl. Diff.Topology) | Hyperbolic GeometryAdditional physical formats: Printed edition:: No titleDDC classification: 514.34 LOC classification: QA613-613.8QA613.6-613.66Online resources: Click here to access online
Contents:
1 Introduction -- 2 Decomposition into 3–balls -- 3 Ideal Polyhedra -- 4 I–bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions.
In: Springer eBooksSummary: This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK2011

1 Introduction -- 2 Decomposition into 3–balls -- 3 Ideal Polyhedra -- 4 I–bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions.

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha