The Method of Approximate Inverse: Theory and Applications [electronic resource] / by Thomas Schuster.

By: Schuster, Thomas [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1906Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007Description: XIV, 202 p. 35 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540712275Subject(s): Mathematics | Matrix theory | Integral equations | Differential equations, partial | Numerical analysis | Mathematics | Linear and Multilinear Algebras, Matrix Theory | Partial Differential Equations | Integral Equations | Numerical AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 512.5 LOC classification: QA184-205Online resources: Click here to access online
Contents:
Inverse and Semi-discrete Problems -- Ill-posed problems and regularization methods -- Approximate inverse in L 2-spaces -- Approximate inverse in Hilbert spaces -- Approximate inverse in distribution spaces -- Conclusion and perspectives -- Application to 3D Doppler Tomography -- A semi-discrete setup for Doppler tomography -- Solving the semi-discrete problem -- Convergence and stability -- Approaches for defect correction -- Conclusion and perspectives -- Application to the spherical mean operator -- The spherical mean operator -- Design of a mollifier -- Computation of reconstruction kernels -- Numerical experiments -- Conclusion and perspectives -- Further Applications -- Approximate inverse and X-ray diffractometry -- A filtered backprojection algorithm -- Computation of reconstruction kernels in 3D computerized tomography -- Conclusion and perspectives.
In: Springer eBooksSummary: Inverse problems arise whenever one tries to calculate a required quantity from given measurements of a second quantity that is associated to the first one. Besides medical imaging and non-destructive testing, inverse problems also play an increasing role in other disciplines such as industrial and financial mathematics. Hence, there is a need for stable and efficient solvers. The book is concerned with the method of approximate inverse which is a regularization technique for stably solving inverse problems in various settings such as L2-spaces, Hilbert spaces or spaces of distributions. The performance and functionality of the method is demonstrated on several examples from medical imaging and non-destructive testing such as computerized tomography, Doppler tomography, SONAR, X-ray diffractometry and thermoacoustic computerized tomography. The book addresses graduate students and researchers interested in the numerical analysis of inverse problems and regularization techniques or in efficient solvers for the applications mentioned above.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK1857

Inverse and Semi-discrete Problems -- Ill-posed problems and regularization methods -- Approximate inverse in L 2-spaces -- Approximate inverse in Hilbert spaces -- Approximate inverse in distribution spaces -- Conclusion and perspectives -- Application to 3D Doppler Tomography -- A semi-discrete setup for Doppler tomography -- Solving the semi-discrete problem -- Convergence and stability -- Approaches for defect correction -- Conclusion and perspectives -- Application to the spherical mean operator -- The spherical mean operator -- Design of a mollifier -- Computation of reconstruction kernels -- Numerical experiments -- Conclusion and perspectives -- Further Applications -- Approximate inverse and X-ray diffractometry -- A filtered backprojection algorithm -- Computation of reconstruction kernels in 3D computerized tomography -- Conclusion and perspectives.

Inverse problems arise whenever one tries to calculate a required quantity from given measurements of a second quantity that is associated to the first one. Besides medical imaging and non-destructive testing, inverse problems also play an increasing role in other disciplines such as industrial and financial mathematics. Hence, there is a need for stable and efficient solvers. The book is concerned with the method of approximate inverse which is a regularization technique for stably solving inverse problems in various settings such as L2-spaces, Hilbert spaces or spaces of distributions. The performance and functionality of the method is demonstrated on several examples from medical imaging and non-destructive testing such as computerized tomography, Doppler tomography, SONAR, X-ray diffractometry and thermoacoustic computerized tomography. The book addresses graduate students and researchers interested in the numerical analysis of inverse problems and regularization techniques or in efficient solvers for the applications mentioned above.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha