Sobolev Gradients and Differential Equations [electronic resource] / by John William Neuberger.

By: Neuberger, John William [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1670Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 1997Description: VIII, 152 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540695943Subject(s): Mathematics | Differential equations, partial | Numerical analysis | Mathematics | Partial Differential Equations | Numerical AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 515.353 LOC classification: QA370-380Online resources: Click here to access online
Contents:
Several gradients -- Comparison of two gradients -- Continuous steepest descent in Hilbert space: Linear case -- Continuous steepest descent in Hilbert space: Nonlinear case -- Orthogonal projections, Adjoints and Laplacians -- Introducing boundary conditions -- Newton's method in the context of Sobolev gradients -- Finite difference setting: the inner product case -- Sobolev gradients for weak solutions: Function space case -- Sobolev gradients in non-inner product spaces: Introduction -- The superconductivity equations of Ginzburg-Landau -- Minimal surfaces -- Flow problems and non-inner product Sobolev spaces -- Foliations as a guide to boundary conditions -- Some related iterative methods for differential equations -- A related analytic iteration method -- Steepest descent for conservation equations -- A sample computer code with notes.
In: Springer eBooksSummary: A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK1812

Several gradients -- Comparison of two gradients -- Continuous steepest descent in Hilbert space: Linear case -- Continuous steepest descent in Hilbert space: Nonlinear case -- Orthogonal projections, Adjoints and Laplacians -- Introducing boundary conditions -- Newton's method in the context of Sobolev gradients -- Finite difference setting: the inner product case -- Sobolev gradients for weak solutions: Function space case -- Sobolev gradients in non-inner product spaces: Introduction -- The superconductivity equations of Ginzburg-Landau -- Minimal surfaces -- Flow problems and non-inner product Sobolev spaces -- Foliations as a guide to boundary conditions -- Some related iterative methods for differential equations -- A related analytic iteration method -- Steepest descent for conservation equations -- A sample computer code with notes.

A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha