Quantization and Non-holomorphic Modular Forms [electronic resource] / by André Unterberger.
Material type: TextSeries: Lecture Notes in Mathematics ; 1742Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2000Description: X, 258 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540446606Subject(s): Mathematics | Number theory | Mathematics | Number TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 512.7 LOC classification: QA241-247.5Online resources: Click here to access onlineCurrent library | Home library | Call number | Materials specified | URL | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
IMSc Library | IMSc Library | Link to resource | Available | EBK1275 |
Distributions associated with the non-unitary principal series -- Modular distributions -- The principal series of SL(2, ?) and the Radon transform -- Another look at the composition of Weyl symbols -- The Roelcke-Selberg decomposition and the Radon transform -- Recovering the Roelcke-Selberg coefficients of a function in L 2(???) -- The “product” of two Eisenstein distributions -- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part -- A digression on kloosterman sums -- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part -- The expansion of the poisson bracket of two eisenstein series -- Automorphic distributions on ?2 -- The Hecke decomposition of products or Poisson brackets of two Eisenstein series -- A generating series of sorts for Maass cusp-forms -- Some arithmetic distributions -- Quantization, products and Poisson brackets -- Moving to the forward light-cone: the Lax-Phillips theory revisited -- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?) -- Quadratic orbits: a dual problem.
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
There are no comments on this title.