Quantization and Non-holomorphic Modular Forms [electronic resource] / by André Unterberger.

By: Unterberger, André [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1742Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2000Description: X, 258 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540446606Subject(s): Mathematics | Number theory | Mathematics | Number TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 512.7 LOC classification: QA241-247.5Online resources: Click here to access online
Contents:
Distributions associated with the non-unitary principal series -- Modular distributions -- The principal series of SL(2, ?) and the Radon transform -- Another look at the composition of Weyl symbols -- The Roelcke-Selberg decomposition and the Radon transform -- Recovering the Roelcke-Selberg coefficients of a function in L 2(???) -- The “product” of two Eisenstein distributions -- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part -- A digression on kloosterman sums -- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part -- The expansion of the poisson bracket of two eisenstein series -- Automorphic distributions on ?2 -- The Hecke decomposition of products or Poisson brackets of two Eisenstein series -- A generating series of sorts for Maass cusp-forms -- Some arithmetic distributions -- Quantization, products and Poisson brackets -- Moving to the forward light-cone: the Lax-Phillips theory revisited -- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?) -- Quadratic orbits: a dual problem.
In: Springer eBooksSummary: This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK1275

Distributions associated with the non-unitary principal series -- Modular distributions -- The principal series of SL(2, ?) and the Radon transform -- Another look at the composition of Weyl symbols -- The Roelcke-Selberg decomposition and the Radon transform -- Recovering the Roelcke-Selberg coefficients of a function in L 2(???) -- The “product” of two Eisenstein distributions -- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part -- A digression on kloosterman sums -- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part -- The expansion of the poisson bracket of two eisenstein series -- Automorphic distributions on ?2 -- The Hecke decomposition of products or Poisson brackets of two Eisenstein series -- A generating series of sorts for Maass cusp-forms -- Some arithmetic distributions -- Quantization, products and Poisson brackets -- Moving to the forward light-cone: the Lax-Phillips theory revisited -- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?) -- Quadratic orbits: a dual problem.

This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha