McCord, Christopher Keil.
The integral manifolds of the three body problem / [electronic resource] Christopher K. McCord, Kenneth R. Meyer, Quidong Wang. - Providence, R.I. : American Mathematical Society, 1998. - 1 online resource (viii, 91 p. : ill.) - Memoirs of the American Mathematical Society, v. 628 0065-9266 (print); 1947-6221 (online); .
"March 1998, volume 132, number 628 (fourth of 5 numbers)."
Includes bibliographical references (p. 91).
1. Introduction 2. The decomposition of the spaces 3. The cohomology 4. The analysis of $\mathfrak (c, h)$ for equal masses 5. The analysis of $\mathfrak (c, h)$ for general masses
Access is restricted to licensed institutions
Electronic reproduction.
Providence, Rhode Island :
American Mathematical Society.
2012
Mode of access : World Wide Web
9781470402174 (online)
Three-body problem.
Celestial mechanics.
Manifolds (Mathematics)
QA3 QB362 / .A57 no. 628
521
The integral manifolds of the three body problem / [electronic resource] Christopher K. McCord, Kenneth R. Meyer, Quidong Wang. - Providence, R.I. : American Mathematical Society, 1998. - 1 online resource (viii, 91 p. : ill.) - Memoirs of the American Mathematical Society, v. 628 0065-9266 (print); 1947-6221 (online); .
"March 1998, volume 132, number 628 (fourth of 5 numbers)."
Includes bibliographical references (p. 91).
1. Introduction 2. The decomposition of the spaces 3. The cohomology 4. The analysis of $\mathfrak (c, h)$ for equal masses 5. The analysis of $\mathfrak (c, h)$ for general masses
Access is restricted to licensed institutions
Electronic reproduction.
Providence, Rhode Island :
American Mathematical Society.
2012
Mode of access : World Wide Web
9781470402174 (online)
Three-body problem.
Celestial mechanics.
Manifolds (Mathematics)
QA3 QB362 / .A57 no. 628
521