Melrose, Donald.
Quantum Plasmadynamics Magnetized Plasmas / [electronic resource] : by Donald Melrose. - New York, NY : Springer New York : Imprint: Springer, 2013. - XIV, 490 p. 41 illus. online resource. - Lecture Notes in Physics, 854 0075-8450 ; . - Lecture Notes in Physics, 854 .
Preface -- Chapter 1: Covariant Fluid Models for Magnetized Plasmas -- Chapter 2: Response Tensors for Magnetized Plasmas -- Chapter 3: Waves in Magnetized Plasmas -- Chapter 4: Gyromagnetic Processes -- Chapter 5: Magnetized Dirac Electron -- Chapter 6: Quantum Theory of Gyromagnetic Processes -- Chapter 7: Second Order Gyromagnetic Processes -- Chapter 8: Magnetized Vacuum -- Chapter 9: Response of Magnetized Electron Gas -- Appendix A: Special Functions -- Index.
The covariant (4-tensor) theory for relativistic quantum plasmas presented in the first volume is generalized to magnetized plasma in this second volume. The first four chapters are concerned with classical theory, including covariant forms of cold-plasma, MHD and kinetic theory and the theory of gyromagnetic emission. The response 4-tensor for an arbitrary distribution is evaluated, using both the forward-scattering and Vlasov methods, applied to a relativistic thermal distribution and used to discuss wave dispersion in relativistic magnetized plasmas. In the second half of the book, solutions of Dirac's equation for a magnetized electron are used to develop a magnetized version of QED. This form of QED is applied to gyromagnetic processes, the response of the magnetized vacuum and the response of a magnetized electron gas. The theory has a potentially wide range of applications, such as super-strong magnetic fields in pulsars, high-powered lasers and spin-dependence in a laboratory electron gas.
9781461440451
10.1007/978-1-4614-4045-1 doi
Physics.
Quantum theory.
Physics.
Astrophysics and Astroparticles.
Quantum Physics.
Atoms and Molecules in Strong Fields, Laser Matter Interaction.
Plasma Physics.
QB460-466
523.01
Quantum Plasmadynamics Magnetized Plasmas / [electronic resource] : by Donald Melrose. - New York, NY : Springer New York : Imprint: Springer, 2013. - XIV, 490 p. 41 illus. online resource. - Lecture Notes in Physics, 854 0075-8450 ; . - Lecture Notes in Physics, 854 .
Preface -- Chapter 1: Covariant Fluid Models for Magnetized Plasmas -- Chapter 2: Response Tensors for Magnetized Plasmas -- Chapter 3: Waves in Magnetized Plasmas -- Chapter 4: Gyromagnetic Processes -- Chapter 5: Magnetized Dirac Electron -- Chapter 6: Quantum Theory of Gyromagnetic Processes -- Chapter 7: Second Order Gyromagnetic Processes -- Chapter 8: Magnetized Vacuum -- Chapter 9: Response of Magnetized Electron Gas -- Appendix A: Special Functions -- Index.
The covariant (4-tensor) theory for relativistic quantum plasmas presented in the first volume is generalized to magnetized plasma in this second volume. The first four chapters are concerned with classical theory, including covariant forms of cold-plasma, MHD and kinetic theory and the theory of gyromagnetic emission. The response 4-tensor for an arbitrary distribution is evaluated, using both the forward-scattering and Vlasov methods, applied to a relativistic thermal distribution and used to discuss wave dispersion in relativistic magnetized plasmas. In the second half of the book, solutions of Dirac's equation for a magnetized electron are used to develop a magnetized version of QED. This form of QED is applied to gyromagnetic processes, the response of the magnetized vacuum and the response of a magnetized electron gas. The theory has a potentially wide range of applications, such as super-strong magnetic fields in pulsars, high-powered lasers and spin-dependence in a laboratory electron gas.
9781461440451
10.1007/978-1-4614-4045-1 doi
Physics.
Quantum theory.
Physics.
Astrophysics and Astroparticles.
Quantum Physics.
Atoms and Molecules in Strong Fields, Laser Matter Interaction.
Plasma Physics.
QB460-466
523.01