000 03514nam a22004335a 4500
001 184-141117
003 CH-001817-3
005 20170613140824.0
006 a fot ||| 0|
007 cr nn mmmmamaa
008 141117e20141201sz fot ||| 0|eng d
020 _a9783037196472
024 7 0 _a10.4171/147
_2doi
040 _ach0018173
072 7 _aPBMP
_2bicssc
084 _a53-xx
_a51-xx
_a52-xx
_a58-xx
_2msc
245 1 0 _aHandbook of Hilbert Geometry
_h[electronic resource] /
_cAthanase Papadopoulos, Marc Troyanov
260 3 _aZuerich, Switzerland :
_bEuropean Mathematical Society Publishing House,
_c2014
264 1 _aZuerich, Switzerland :
_bEuropean Mathematical Society Publishing House,
_c2014
300 _a1 online resource (460 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 0 _aIRMA Lectures in Mathematics and Theoretical Physics (IRMA)
_v22
505 0 0 _tWeak Minkowski spaces /
_rAthanase Papadopoulos, Marc Troyanov --
_tFrom Funk to Hilbert geometry /
_rAthanase Papadopoulos, Marc Troyanov --
_tFunk and Hilbert geometries from the Finslerian viewpoint /
_rMarc Troyanov --
_tOn the Hilbert geometry of convex polytopes /
_rConstantin Vernicos --
_tThe horofunction boundary and isometry group of the Hilbert geometry /
_rCormac Walsh --
_tCharacterizations of hyperbolic geometry among Hilbert geometries /
_rRen Guo --
_tAround groups in Hilbert geometry /
_rLudovic Marquis --
_tThe geodesic flow of Finsler and Hilbert geometries /
_rMickaël Crampon --
_tDynamics of Hilbert nonexpansive maps /
_rAnders Karlsson --
_tBirkhoff’s version of Hilbert’s metric and its applications in analysis /
_rBas Lemmens, Roger Nussbaum --
_tConvex real projective structures and Hilbert metrics /
_rInkang Kim, Athanase Papadopoulos --
_tWeil–Petersson Funk metric on Teichmüller space /
_rHideki Miyachi, Ken’ichi Ohshika, Sumio Yamada --
_tFunk and Hilbert geometries in spaces of constant curvature /
_rAthanase Papadopoulos, Sumio Yamada --
_tOn the origin of Hilbert geometry /
_rMarc Troyanov --
_tHilbert’s fourth problem /
_rAthanase Papadopoulos --
_tOpen problems.
506 1 _aRestricted to subscribers:
_uhttp://www.ems-ph.org/ebooks.php
520 _aThis volume presents surveys, written by experts in the field, on various classical and the modern aspects of Hilbert geometry. They are assuming several points of view: Finsler geometry, calculus of variations, projective geometry, dynamical systems, and others. Some fruitful relations between Hilbert geometry and other subjects in mathematics are emphasized, including Teichmüller spaces, convexity theory, Perron–Frobenius theory, representation theory, partial differential equations, coarse geometry, ergodic theory, algebraic groups, Coxeter groups, geometric group theory, Lie groups and discrete group actions. The Handbook is addressed to both students who want to learn the theory and researchers working in the area.
650 0 7 _aDifferential & Riemannian geometry
_2bicssc
650 0 7 _aDifferential geometry
_2msc
650 0 7 _aGeometry
_2msc
650 0 7 _aConvex and discrete geometry
_2msc
650 0 7 _aGlobal analysis, analysis on manifolds
_2msc
700 1 _aPapadopoulos, Athanase,
_eeditor.
700 1 _aTroyanov, Marc,
_eeditor.
856 4 0 _uhttps://doi.org/10.4171/147
856 4 2 _3cover image
_uhttp://www.ems-ph.org/img/books/irma22_mini.gif
942 _2EBK13852
_cEBK
999 _c50476
_d50476