000 02350nam a22004095a 4500
001 42-091109
003 CH-001817-3
005 20170613140733.0
006 a fot ||| 0|
007 cr nn mmmmamaa
008 091109e20060710sz fot ||| 0|eng d
020 _a9783037195253
024 7 0 _a10.4171/025
_2doi
040 _ach0018173
072 7 _aPBMP
_2bicssc
084 _a53-xx
_a32-xx
_a58-xx
_2msc
100 1 _aBallmann, Werner,
_eauthor.
245 1 0 _aLectures on Kähler Manifolds
_h[electronic resource] /
_cWerner Ballmann
260 3 _aZuerich, Switzerland :
_bEuropean Mathematical Society Publishing House,
_c2006
264 1 _aZuerich, Switzerland :
_bEuropean Mathematical Society Publishing House,
_c2006
300 _a1 online resource (182 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 0 _aESI Lectures in Mathematics and Physics (ESI)
506 1 _aRestricted to subscribers:
_uhttp://www.ems-ph.org/ebooks.php
520 _aThese notes are based on lectures the author held at the University of Bonn and the Erwin-Schrödinger-Institute in Vienna. The aim is to give a thorough introduction to the theory of Kähler manifolds with special emphasis on the differential geometric side of Kähler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kähler manifolds. The more advanced topics are the cohomology of Kähler manifolds, Calabi conjecture, Gromov's Kähler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern–Weil theory, symmetric spaces, and L2-cohomology.
650 0 7 _aDifferential & Riemannian geometry
_2bicssc
650 0 7 _aDifferential geometry
_2msc
650 0 7 _aSeveral complex variables and analytic spaces
_2msc
650 0 7 _aGlobal analysis, analysis on manifolds
_2msc
700 1 _aBallmann, Werner,
_eauthor.
856 4 0 _uhttps://doi.org/10.4171/025
856 4 2 _3cover image
_uhttp://www.ems-ph.org/img/books/ballmann_mini.jpg
942 _2EBK13738
_cEBK
999 _c50362
_d50362