000 | 01971pam a2200421 a 4500 | ||
---|---|---|---|
001 | 1183228 | ||
003 | RPAM | ||
005 | 20160624102321.0 | ||
006 | ma b 000 0 | ||
007 | cr/||||||||||| | ||
008 | 140928s1998 riua ob 000 0 eng | ||
020 | _a9781470402174 (online) | ||
040 |
_aDLC _cDLC _dDLC _dRPAM |
||
050 | 0 | 0 |
_aQA3 _b.A57 no. 628 _aQB362 |
082 | 0 | 0 |
_a521 _221 |
100 | 1 | _aMcCord, Christopher Keil. | |
245 | 1 | 4 |
_aThe integral manifolds of the three body problem / _h[electronic resource] _cChristopher K. McCord, Kenneth R. Meyer, Quidong Wang. |
260 |
_aProvidence, R.I. : _bAmerican Mathematical Society, _c1998. |
||
300 | _a1 online resource (viii, 91 p. : ill.) | ||
490 | 0 |
_aMemoirs of the American Mathematical Society, _x0065-9266 (print); _x1947-6221 (online); _vv. 628 |
|
500 | _a"March 1998, volume 132, number 628 (fourth of 5 numbers)." | ||
504 | _aIncludes bibliographical references (p. 91). | ||
505 | 0 | 0 |
_t1. Introduction _t2. The decomposition of the spaces _t3. The cohomology _t4. The analysis of $\mathfrak {K}(c, h)$ for equal masses _t5. The analysis of $\mathfrak {K}(c, h)$ for general masses |
506 | 1 | _aAccess is restricted to licensed institutions | |
533 |
_aElectronic reproduction. _bProvidence, Rhode Island : _cAmerican Mathematical Society. _d2012 |
||
538 | _aMode of access : World Wide Web | ||
588 | _aDescription based on print version record. | ||
650 | 0 | _aThree-body problem. | |
650 | 0 | _aCelestial mechanics. | |
650 | 0 | _aManifolds (Mathematics) | |
700 | 1 |
_aMeyer, Kenneth R. _q(Kenneth Ray), _d1937- |
|
700 | 1 | _aWang, Quidong. | |
776 | 0 |
_iPrint version: _aMcCord, Christopher Keil. _tintegral manifolds of the three body problem / _w(DLC) 97047115 _x0065-9266 _z9780821806920 |
|
786 | _dAmerican mathematical Society | ||
856 | 4 |
_3Contents _uhttp://www.ams.org/memo/0628 |
|
856 | 4 |
_3Contents _uhttp://dx.doi.org/10.1090/memo/0628 |
|
942 |
_2EBK13081 _cEBK |
||
999 |
_c42375 _d42375 |