000 | 02094cam a2200385 a 4500 | ||
---|---|---|---|
001 | 1389162 | ||
003 | RPAM | ||
005 | 20160624102313.0 | ||
006 | m b 000 0 | ||
007 | cr/||||||||||| | ||
008 | 140928s1983 riu ob 000 0 eng | ||
020 | _a9781470406837 (online) | ||
040 |
_aDLC _cDLC _dDLC _dOCoLC _dRPAM |
||
050 | 0 | 0 |
_aQA3 _b.A57 no. 273 _aQA403.5 |
082 | 0 | 0 |
_a510 s _a515/.2433 _219 |
100 | 1 |
_aStruppa, Daniele Carlo, _d1955- |
|
245 | 1 | 4 |
_aThe fundamental principle for systems of convolution equations / _h[electronic resource] _cDaniele Carlo Struppa. |
260 |
_aProvidence, R.I. : _bAmerican Mathematical Society, _c1983. |
||
300 | _a1 online resource (iv, 167 p.) | ||
490 | 0 |
_aMemoirs of the American Mathematical Society, _x0065-9266 (print); _x1947-6221 (online); _vv. 273 |
|
504 | _aBibliography: p. 165-167. | ||
505 | 0 | 0 |
_tI. Introduction _tII. The interpolation formula _tIII. The slowly decreasing conditions _tIV. The generalized Koszul complex _tV. Representation theorems for systems of convolution equations in the spaces $A_p(\mathbb {C}^n)$ _tVI. Inductive limits of spaces $A_p(\mathbb {C}^n)$ _tVII. The representation theorems and the Lau-spaces _tVIII. The spaces $\mathcal {D}_\omega (\mathbb {R}^n)$ and $\mathcal {D}'_\omega (\mathbb {R}^n)$ _tIX. Some open questions |
506 | 1 | _aAccess is restricted to licensed institutions | |
533 |
_aElectronic reproduction. _bProvidence, Rhode Island : _cAmerican Mathematical Society. _d2012 |
||
538 | _aMode of access : World Wide Web | ||
588 | _aDescription based on print version record. | ||
650 | 0 | _aFourier analysis. | |
650 | 0 | _aConvolutions (Mathematics) | |
650 | 0 | _aTheory of distributions (Functional analysis) | |
776 | 0 |
_iPrint version: _aStruppa, Daniele Carlo, 1955- _tfundamental principle for systems of convolution equations / _w(DLC) 82020614 _x0065-9266 _z9780821822739 |
|
786 | _dAmerican mathematical Society | ||
856 | 4 |
_3Contents _uhttp://www.ams.org/memo/0273 |
|
856 | 4 |
_3Contents _uhttp://dx.doi.org/10.1090/memo/0273 |
|
942 |
_2EBK12726 _cEBK |
||
999 |
_c42020 _d42020 |