000 02094cam a2200385 a 4500
001 1389162
003 RPAM
005 20160624102313.0
006 m b 000 0
007 cr/|||||||||||
008 140928s1983 riu ob 000 0 eng
020 _a9781470406837 (online)
040 _aDLC
_cDLC
_dDLC
_dOCoLC
_dRPAM
050 0 0 _aQA3
_b.A57 no. 273
_aQA403.5
082 0 0 _a510 s
_a515/.2433
_219
100 1 _aStruppa, Daniele Carlo,
_d1955-
245 1 4 _aThe fundamental principle for systems of convolution equations /
_h[electronic resource]
_cDaniele Carlo Struppa.
260 _aProvidence, R.I. :
_bAmerican Mathematical Society,
_c1983.
300 _a1 online resource (iv, 167 p.)
490 0 _aMemoirs of the American Mathematical Society,
_x0065-9266 (print);
_x1947-6221 (online);
_vv. 273
504 _aBibliography: p. 165-167.
505 0 0 _tI. Introduction
_tII. The interpolation formula
_tIII. The slowly decreasing conditions
_tIV. The generalized Koszul complex
_tV. Representation theorems for systems of convolution equations in the spaces $A_p(\mathbb {C}^n)$
_tVI. Inductive limits of spaces $A_p(\mathbb {C}^n)$
_tVII. The representation theorems and the Lau-spaces
_tVIII. The spaces $\mathcal {D}_\omega (\mathbb {R}^n)$ and $\mathcal {D}'_\omega (\mathbb {R}^n)$
_tIX. Some open questions
506 1 _aAccess is restricted to licensed institutions
533 _aElectronic reproduction.
_bProvidence, Rhode Island :
_cAmerican Mathematical Society.
_d2012
538 _aMode of access : World Wide Web
588 _aDescription based on print version record.
650 0 _aFourier analysis.
650 0 _aConvolutions (Mathematics)
650 0 _aTheory of distributions (Functional analysis)
776 0 _iPrint version:
_aStruppa, Daniele Carlo, 1955-
_tfundamental principle for systems of convolution equations /
_w(DLC) 82020614
_x0065-9266
_z9780821822739
786 _dAmerican mathematical Society
856 4 _3Contents
_uhttp://www.ams.org/memo/0273
856 4 _3Contents
_uhttp://dx.doi.org/10.1090/memo/0273
942 _2EBK12726
_cEBK
999 _c42020
_d42020