000 | 02000cam a2200421 i 4500 | ||
---|---|---|---|
001 | 2719989 | ||
003 | RPAM | ||
005 | 20160624102311.0 | ||
006 | m b 001 0 | ||
007 | cr/||||||||||| | ||
008 | 140928s1977 riu ob 001 0 eng | ||
020 | _a9781470400545 (online) | ||
040 |
_aDLC _cDLC _dDLC _dRPAM |
||
050 | 0 | 0 |
_aQA3 _b.A57 no. 188 _aQA564 |
082 | 0 | 0 |
_a510/.8 s _a512/.33 |
100 | 1 |
_aIarrobino, Anthony A. _q(Anthony Ayers), _d1943- |
|
245 | 1 | 0 |
_aPunctual Hilbert schemes / _h[electronic resource] _cAnthony A. Iarrobino. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c1977. |
||
300 | _a1 online resource (viii, 112 p.) | ||
490 | 1 |
_aMemoirs of the American Mathematical Society, _x0065-9266 (print); _x1947-6221 (online); _vv. 188 |
|
500 | _a"Volume 6 ... (end of volume)" | ||
504 | _aBibliography: p. 105-108. | ||
500 | _aIncludes index. | ||
505 | 0 | 0 |
_t1. A stratification of the Hilbert scheme _t2. $Z_T$ and $G_T$ in the case $\operatorname {char} k = 0$ _t3. $Z_T$ and $G_T$ when $\operatorname {char} k = p$ _t4. Vector spaces of forms, local parameters on the Hilbert scheme _t5. Irreducibility of $\operatorname {Hilb}^n R$, after Brian�con _t6. Problems and comments |
506 | 1 | _aAccess is restricted to licensed institutions | |
533 |
_aElectronic reproduction. _bProvidence, Rhode Island : _cAmerican Mathematical Society. _d2012 |
||
538 | _aMode of access : World Wide Web | ||
588 | _aDescription based on print version record. | ||
650 | 0 | _aHilbert schemes. | |
650 | 0 | _aPower series rings. | |
650 | 0 | _aIdeals (Algebra) | |
776 | 0 |
_iPrint version: _aIarrobino, Anthony A. 1943- _tPunctual Hilbert schemes / _w(DLC) 77003947 _x0065-9266 _z9780821821886 |
|
786 | _dAmerican mathematical Society | ||
830 | 0 |
_aMemoirs of the American Mathematical Society ; _vno. 188. |
|
856 | 4 |
_3Contents _uhttp://www.ams.org/memo/0188 |
|
856 | 4 |
_3Contents _uhttp://dx.doi.org/10.1090/memo/0188 |
|
942 |
_2EBK12641 _cEBK |
||
999 |
_c41935 _d41935 |