000 02306nam a22003978a 4500
001 CR9780511735264
003 UkCbUP
005 20160624102301.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 100325s1996||||enk s ||1 0|eng|d
020 _a9780511735264 (ebook)
020 _z9780521576055 (paperback)
040 _aUkCbUP
_cUkCbUP
_erda
050 0 0 _aQA611.28
_b.B43 1996
082 0 0 _a514/.32
_220
100 1 _aBecker, Howard,
_eauthor.
245 1 4 _aThe Descriptive Set Theory of Polish Group Actions /
_cHoward Becker, Alexander S. Kechris.
260 1 _aCambridge :
_bCambridge University Press,
_c1996.
264 1 _aCambridge :
_bCambridge University Press,
_c1996.
300 _a1 online resource (152 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aLondon Mathematical Society Lecture Note Series ;
_vno. 232
500 _aTitle from publisher's bibliographic system (viewed on 16 Oct 2015).
520 _aIn this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.
650 0 _aPolish spaces (Mathematics)
650 0 _aSet theory
700 1 _aKechris, Alexander S.,
_eauthor.
776 0 8 _iPrint version:
_z9780521576055
786 _dCambridge
830 0 _aLondon Mathematical Society Lecture Note Series ;
_vno. 232.
856 4 0 _uhttp://dx.doi.org/10.1017/CBO9780511735264
942 _2EBK12214
_cEBK
999 _c41508
_d41508