000 | 02270nam a22004098a 4500 | ||
---|---|---|---|
001 | CR9780511751752 | ||
003 | UkCbUP | ||
005 | 20160624102255.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 100421s2004||||enk s ||1 0|eng|d | ||
020 | _a9780511751752 (ebook) | ||
020 | _z9780521836630 (paperback) | ||
040 |
_aUkCbUP _cUkCbUP _erda |
||
050 | 0 | 0 |
_aQA166 _b.C837 2004 |
082 | 0 | 0 |
_a511/.5 _222 |
100 | 1 |
_aCvetkovic, Dragoš, _eauthor. |
|
245 | 1 | 0 |
_aSpectral Generalizations of Line Graphs : _bOn Graphs with Least Eigenvalue -2 / _cDragoš Cvetkovic, Peter Rowlinson, Slobodan Simic. |
260 | 1 |
_aCambridge : _bCambridge University Press, _c2004. |
|
264 | 1 |
_aCambridge : _bCambridge University Press, _c2004. |
|
300 |
_a1 online resource (310 pages) : _bdigital, PDF file(s). |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 |
_aLondon Mathematical Society Lecture Note Series ; _vno. 314 |
|
500 | _aTitle from publisher's bibliographic system (viewed on 16 Oct 2015). | ||
520 | _aLine graphs have the property that their least eigenvalue is greater than or equal to –2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory. | ||
650 | 0 | _aGraph theory | |
650 | 0 | _aEigenvalues | |
700 | 1 |
_aRowlinson, Peter, _eauthor. |
|
700 | 1 |
_aSimic, Slobodan, _eauthor. |
|
776 | 0 | 8 |
_iPrint version: _z9780521836630 |
786 | _dCambridge | ||
830 | 0 |
_aLondon Mathematical Society Lecture Note Series ; _vno. 314. |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1017/CBO9780511751752 |
942 |
_2EBK11962 _cEBK |
||
999 |
_c41256 _d41256 |