000 02270nam a22004098a 4500
001 CR9780511751752
003 UkCbUP
005 20160624102255.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 100421s2004||||enk s ||1 0|eng|d
020 _a9780511751752 (ebook)
020 _z9780521836630 (paperback)
040 _aUkCbUP
_cUkCbUP
_erda
050 0 0 _aQA166
_b.C837 2004
082 0 0 _a511/.5
_222
100 1 _aCvetkovic, Dragoš,
_eauthor.
245 1 0 _aSpectral Generalizations of Line Graphs :
_bOn Graphs with Least Eigenvalue -2 /
_cDragoš Cvetkovic, Peter Rowlinson, Slobodan Simic.
260 1 _aCambridge :
_bCambridge University Press,
_c2004.
264 1 _aCambridge :
_bCambridge University Press,
_c2004.
300 _a1 online resource (310 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aLondon Mathematical Society Lecture Note Series ;
_vno. 314
500 _aTitle from publisher's bibliographic system (viewed on 16 Oct 2015).
520 _aLine graphs have the property that their least eigenvalue is greater than or equal to –2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
650 0 _aGraph theory
650 0 _aEigenvalues
700 1 _aRowlinson, Peter,
_eauthor.
700 1 _aSimic, Slobodan,
_eauthor.
776 0 8 _iPrint version:
_z9780521836630
786 _dCambridge
830 0 _aLondon Mathematical Society Lecture Note Series ;
_vno. 314.
856 4 0 _uhttp://dx.doi.org/10.1017/CBO9780511751752
942 _2EBK11962
_cEBK
999 _c41256
_d41256