000 03562nam a22005055i 4500
001 978-3-540-47042-7
003 DE-He213
005 20160624102020.0
007 cr nn 008mamaa
008 121227s1990 gw | s |||| 0|eng d
020 _a9783540470427
_9978-3-540-47042-7
024 7 _a10.1007/3-540-52590-4
_2doi
050 4 _aQA75.5-76.95
072 7 _aUYZG
_2bicssc
072 7 _aCOM037000
_2bisacsh
082 0 4 _a004.0151
_223
245 1 0 _aCAAP '90
_h[electronic resource] :
_b15th Colloquium on Trees in Algebra and Programming Copenhagen, Denmark, May 15–18, 1990 Proceedings /
_cedited by A. Arnold.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1990.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1990.
300 _aVI, 288 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v431
505 0 _aOn the power of bounded concurrency II: The pushdown automata level -- Trees everywhere -- Combinatory forms for equational programming: Instances, unification and narrowing -- Graphical versus logical specifications -- More efficient bottom-up tree pattern matching -- On the regular structure of prefix rewriting -- A unified approach for showing language containment and equivalence between various types of ?-automata -- Unitary monoid with two generators: An algorithmic point of view -- Coherence of subsumption -- Petri nets as models of linear logic -- Towards the unification of models for concurrency -- A markovian concurrency measure -- Graph matching in operational semantics and typing -- ML typability is dexptime-complete -- Testing for inductiue (co)-reducibility -- Probabilistic analysis of some distributed algorithms -- Infinite values in hierarchical imperative types -- Equivalence of finite-valued bottom-up finite state tree transducers is decidable.
520 _aThis volume contains the proceedings of the Fifteenth Colloquium on Trees in Algebra and Programming. The papers selected present new research results and cover the following topics: - Logical, algebraic and combinatorial properties of discrete structures (strings, trees, graphs, etc.), including the theory of formal languages considered as that of sets of discrete structures and the theory of rewriting systems over these objects. - Application of discrete structures in computer science, including syntax and semantics of programming languages, operational semantics, logic programming, algorithms and data structures, complexity of algorithms and implementation aspects, proof techniques for nonnumerical algorithms, formal specifications, and visualization of trees and graphs.
650 0 _aComputer science.
650 0 _aSoftware engineering.
650 0 _aComputer software.
650 1 4 _aComputer Science.
650 2 4 _aComputation by Abstract Devices.
650 2 4 _aSoftware Engineering.
650 2 4 _aProgramming Languages, Compilers, Interpreters.
650 2 4 _aAlgorithm Analysis and Problem Complexity.
700 1 _aArnold, A.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540525905
786 _dSpringer
830 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v431
856 4 0 _uhttp://dx.doi.org/10.1007/3-540-52590-4
942 _2EBK5962
_cEBK
999 _c35256
_d35256