000 | 05276nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-540-45167-9 | ||
003 | DE-He213 | ||
005 | 20160624101958.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s2003 gw | s |||| 0|eng d | ||
020 |
_a9783540451679 _9978-3-540-45167-9 |
||
024 | 7 |
_a10.1007/b12006 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTJ210.2-211.495 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aTJFM1 _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aLearning Theory and Kernel Machines _h[electronic resource] : _b16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings / _cedited by Bernhard Schölkopf, Manfred K. Warmuth. |
260 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2003. |
|
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2003. |
|
300 |
_aXIV, 754 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Computer Science, _x0302-9743 ; _v2777 |
|
505 | 0 | _aTarget Area: Computational Game Theory -- Tutorial: Learning Topics in Game-Theoretic Decision Making -- A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria -- Preference Elicitation and Query Learning -- Efficient Algorithms for Online Decision Problems -- Positive Definite Rational Kernels -- Bhattacharyya and Expected Likelihood Kernels -- Maximal Margin Classification for Metric Spaces -- Maximum Margin Algorithms with Boolean Kernels -- Knowledge-Based Nonlinear Kernel Classifiers -- Fast Kernels for Inexact String Matching -- On Graph Kernels: Hardness Results and Efficient Alternatives -- Kernels and Regularization on Graphs -- Data-Dependent Bounds for Multi-category Classification Based on Convex Losses -- Poster Session 1 -- Comparing Clusterings by the Variation of Information -- Multiplicative Updates for Large Margin Classifiers -- Simplified PAC-Bayesian Margin Bounds -- Sparse Kernel Partial Least Squares Regression -- Sparse Probability Regression by Label Partitioning -- Learning with Rigorous Support Vector Machines -- Robust Regression by Boosting the Median -- Boosting with Diverse Base Classifiers -- Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming -- Optimal Rates of Aggregation -- Distance-Based Classification with Lipschitz Functions -- Random Subclass Bounds -- PAC-MDL Bounds -- Universal Well-Calibrated Algorithm for On-Line Classification -- Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling -- Learning Algorithms for Enclosing Points in Bregmanian Spheres -- Internal Regret in On-Line Portfolio Selection -- Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem -- Smooth ?-Insensitive Regression by Loss Symmetrization -- On Finding Large Conjunctive Clusters -- Learning Arithmetic Circuits via Partial Derivatives -- Poster Session 2 -- Using a Linear Fit to Determine Monotonicity Directions -- Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering -- Sequence Prediction Based on Monotone Complexity -- How Many Strings Are Easy to Predict? -- Polynomial Certificates for Propositional Classes -- On-Line Learning with Imperfect Monitoring -- Exploiting Task Relatedness for Multiple Task Learning -- Approximate Equivalence of Markov Decision Processes -- An Information Theoretic Tradeoff between Complexity and Accuracy -- Learning Random Log-Depth Decision Trees under the Uniform Distribution -- Projective DNF Formulae and Their Revision -- Learning with Equivalence Constraints and the Relation to Multiclass Learning -- Target Area: Natural Language Processing -- Tutorial: Machine Learning Methods in Natural Language Processing -- Learning from Uncertain Data -- Learning and Parsing Stochastic Unification-Based Grammars -- Generality’s Price -- On Learning to Coordinate -- Learning All Subfunctions of a Function -- When Is Small Beautiful? -- Learning a Function of r Relevant Variables -- Subspace Detection: A Robust Statistics Formulation -- How Fast Is k-Means? -- Universal Coding of Zipf Distributions -- An Open Problem Regarding the Convergence of Universal A Priori Probability -- Entropy Bounds for Restricted Convex Hulls -- Compressing to VC Dimension Many Points. | |
650 | 0 | _aComputer science. | |
650 | 0 | _aComputer software. | |
650 | 0 | _aArtificial intelligence. | |
650 | 1 | 4 | _aComputer Science. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
650 | 2 | 4 | _aComputation by Abstract Devices. |
650 | 2 | 4 | _aAlgorithm Analysis and Problem Complexity. |
650 | 2 | 4 | _aMathematical Logic and Formal Languages. |
700 | 1 |
_aSchölkopf, Bernhard. _eeditor. |
|
700 | 1 |
_aWarmuth, Manfred K. _eeditor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783540407201 |
786 | _dSpringer | ||
830 | 0 |
_aLecture Notes in Computer Science, _x0302-9743 ; _v2777 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/b12006 |
942 |
_2EBK5223 _cEBK |
||
999 |
_c34517 _d34517 |