000 05276nam a22005295i 4500
001 978-3-540-45167-9
003 DE-He213
005 20160624101958.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 _a9783540451679
_9978-3-540-45167-9
024 7 _a10.1007/b12006
_2doi
050 4 _aQ334-342
050 4 _aTJ210.2-211.495
072 7 _aUYQ
_2bicssc
072 7 _aTJFM1
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
245 1 0 _aLearning Theory and Kernel Machines
_h[electronic resource] :
_b16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings /
_cedited by Bernhard Schölkopf, Manfred K. Warmuth.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2003.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2003.
300 _aXIV, 754 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v2777
505 0 _aTarget Area: Computational Game Theory -- Tutorial: Learning Topics in Game-Theoretic Decision Making -- A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria -- Preference Elicitation and Query Learning -- Efficient Algorithms for Online Decision Problems -- Positive Definite Rational Kernels -- Bhattacharyya and Expected Likelihood Kernels -- Maximal Margin Classification for Metric Spaces -- Maximum Margin Algorithms with Boolean Kernels -- Knowledge-Based Nonlinear Kernel Classifiers -- Fast Kernels for Inexact String Matching -- On Graph Kernels: Hardness Results and Efficient Alternatives -- Kernels and Regularization on Graphs -- Data-Dependent Bounds for Multi-category Classification Based on Convex Losses -- Poster Session 1 -- Comparing Clusterings by the Variation of Information -- Multiplicative Updates for Large Margin Classifiers -- Simplified PAC-Bayesian Margin Bounds -- Sparse Kernel Partial Least Squares Regression -- Sparse Probability Regression by Label Partitioning -- Learning with Rigorous Support Vector Machines -- Robust Regression by Boosting the Median -- Boosting with Diverse Base Classifiers -- Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming -- Optimal Rates of Aggregation -- Distance-Based Classification with Lipschitz Functions -- Random Subclass Bounds -- PAC-MDL Bounds -- Universal Well-Calibrated Algorithm for On-Line Classification -- Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling -- Learning Algorithms for Enclosing Points in Bregmanian Spheres -- Internal Regret in On-Line Portfolio Selection -- Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem -- Smooth ?-Insensitive Regression by Loss Symmetrization -- On Finding Large Conjunctive Clusters -- Learning Arithmetic Circuits via Partial Derivatives -- Poster Session 2 -- Using a Linear Fit to Determine Monotonicity Directions -- Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering -- Sequence Prediction Based on Monotone Complexity -- How Many Strings Are Easy to Predict? -- Polynomial Certificates for Propositional Classes -- On-Line Learning with Imperfect Monitoring -- Exploiting Task Relatedness for Multiple Task Learning -- Approximate Equivalence of Markov Decision Processes -- An Information Theoretic Tradeoff between Complexity and Accuracy -- Learning Random Log-Depth Decision Trees under the Uniform Distribution -- Projective DNF Formulae and Their Revision -- Learning with Equivalence Constraints and the Relation to Multiclass Learning -- Target Area: Natural Language Processing -- Tutorial: Machine Learning Methods in Natural Language Processing -- Learning from Uncertain Data -- Learning and Parsing Stochastic Unification-Based Grammars -- Generality’s Price -- On Learning to Coordinate -- Learning All Subfunctions of a Function -- When Is Small Beautiful? -- Learning a Function of r Relevant Variables -- Subspace Detection: A Robust Statistics Formulation -- How Fast Is k-Means? -- Universal Coding of Zipf Distributions -- An Open Problem Regarding the Convergence of Universal A Priori Probability -- Entropy Bounds for Restricted Convex Hulls -- Compressing to VC Dimension Many Points.
650 0 _aComputer science.
650 0 _aComputer software.
650 0 _aArtificial intelligence.
650 1 4 _aComputer Science.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aComputation by Abstract Devices.
650 2 4 _aAlgorithm Analysis and Problem Complexity.
650 2 4 _aMathematical Logic and Formal Languages.
700 1 _aSchölkopf, Bernhard.
_eeditor.
700 1 _aWarmuth, Manfred K.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540407201
786 _dSpringer
830 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v2777
856 4 0 _uhttp://dx.doi.org/10.1007/b12006
942 _2EBK5223
_cEBK
999 _c34517
_d34517