000 02348nam a22005295i 4500
001 978-3-540-47009-0
003 DE-He213
005 20160624101851.0
007 cr nn 008mamaa
008 121227s1991 gw | s |||| 0|eng d
020 _a9783540470090
_9978-3-540-47009-0
024 7 _a10.1007/3-540-53713-9
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aTing, Lu.
_eauthor.
245 1 0 _aViscous Vortical Flows
_h[electronic resource] /
_cby Lu Ting, Rupert Klein.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1991.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1991.
300 _aV, 222 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Physics,
_x0075-8450 ;
_v374
505 0 _aVortex dominated flows and general theory -- Motion and decay of vortex filaments -- Numerical solutions of viscous vortical flows -- Closing remarks.
520 _aThis is a comprehensive account of the asymptotic theory of slender vortices with diffusion cores. Addressed to both graduate students and researchers it describes the mathematical model and its numerical analysis. The asymptotic analysis involves two length and two time scales. Consistency conditions and time invariance of moments of vorticity are given and applied to numerical solutions. The authors also describe consistency conditions between the large circumferential and axial velocity in the core.
650 0 _aPhysics.
650 0 _aNumerical analysis.
650 0 _aMathematical physics.
650 0 _aFluids.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aNumerical and Computational Methods.
650 2 4 _aFluids.
650 2 4 _aNumerical Analysis.
700 1 _aKlein, Rupert.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540537137
786 _dSpringer
830 0 _aLecture Notes in Physics,
_x0075-8450 ;
_v374
856 4 0 _uhttp://dx.doi.org/10.1007/3-540-53713-9
942 _2EBK2594
_cEBK
999 _c31888
_d31888