000 02733nam a22005055i 4500
001 978-3-540-45934-7
003 DE-He213
005 20160624101849.0
007 cr nn 008mamaa
008 121227s1989 gw | s |||| 0|eng d
020 _a9783540459347
_9978-3-540-45934-7
024 7 _a10.1007/BFb0113492
_2doi
050 4 _aQC19.2-20.85
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.1
_223
100 1 _aSchlichenmaier, Martin.
_eauthor.
245 1 3 _aAn Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
_h[electronic resource] /
_cby Martin Schlichenmaier.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1989.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1989.
300 _aXIII, 149 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Physics,
_x0075-8450 ;
_v322
505 0 _afrom a physicist's viewpoint -- Manifolds -- Topology of riemann surfaces -- Analytic structure -- Differentials and integration -- Tori and jacobians -- Projective varieties -- Moduli space of curves -- Vector bundles, sheaves and cohomology -- The theorem of riemann-roch for line bundles -- The mumford isomorphism on the moduli space.
520 _aThis lecture is intended as an introduction to the mathematical concepts of algebraic and analytic geometry. It is addressed primarily to theoretical physicists, in particular those working in string theories. The author gives a very clear exposition of the main theorems, introducing the necessary concepts by lucid examples, and shows how to work with the methods of algebraic geometry. As an example he presents the Krichever-Novikov construction of algebras of Virasaro type. The book will be welcomed by many researchers as an overview of an important branch of mathematics, a collection of useful formulae and an excellent guide to the more extensive mathematical literature.
650 0 _aPhysics.
650 0 _aAlgebraic topology.
650 0 _aMathematical physics.
650 0 _aQuantum theory.
650 1 4 _aPhysics.
650 2 4 _aMathematical and Computational Physics.
650 2 4 _aElementary Particles, Quantum Field Theory.
650 2 4 _aAlgebraic Topology.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540501244
786 _dSpringer
830 0 _aLecture Notes in Physics,
_x0075-8450 ;
_v322
856 4 0 _uhttp://dx.doi.org/10.1007/BFb0113492
942 _2EBK2502
_cEBK
999 _c31796
_d31796