000 03101nam a22004935i 4500
001 978-3-540-49401-0
003 DE-He213
005 20160624101831.0
007 cr nn 008mamaa
008 121227s1995 gw | s |||| 0|eng d
020 _a9783540494010
_9978-3-540-49401-0
024 7 _a10.1007/BFb0096835
_2doi
050 4 _aQA297-299.4
072 7 _aPBKS
_2bicssc
072 7 _aMAT021000
_2bisacsh
072 7 _aMAT006000
_2bisacsh
082 0 4 _a518
_223
100 1 _aWahlbin, Lars B.
_eauthor.
245 1 0 _aSuperconvergence in Galerkin Finite Element Methods
_h[electronic resource] /
_cby Lars B. Wahlbin.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1995.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1995.
300 _aXII, 172 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1605
505 0 _aSome one-dimensional superconvergence results -- Remarks about some of the tools used in Chapter 1 -- Local and global properties of L 2-projections -- to several space dimensions: some results about superconvergence in L 2-projections -- Second order elliptic boundary value problems in any number of space dimensions: preliminary considerations on local and global estimates and presentation of the main technical tools for showing superconvergence -- Superconvergence in tensor-product elements -- Superconvergence by local symmetry -- Superconvergence for difference quotients on translation invariant meshes -- On superconvergence in nonlinear problems -- 10. Superconvergence in isoparametric mappings of translation invariant meshes: an example -- Superconvergence by averaging: mainly, the K-operator -- A computational investigation of superconvergence for first derivatives in the plane.
520 _aThis book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced. The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aNumerical analysis.
650 1 4 _aMathematics.
650 2 4 _aNumerical Analysis.
650 2 4 _aAnalysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540600114
786 _dSpringer
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1605
856 4 0 _uhttp://dx.doi.org/10.1007/BFb0096835
942 _2EBK1746
_cEBK
999 _c31040
_d31040