000 | 03101nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-540-49401-0 | ||
003 | DE-He213 | ||
005 | 20160624101831.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s1995 gw | s |||| 0|eng d | ||
020 |
_a9783540494010 _9978-3-540-49401-0 |
||
024 | 7 |
_a10.1007/BFb0096835 _2doi |
|
050 | 4 | _aQA297-299.4 | |
072 | 7 |
_aPBKS _2bicssc |
|
072 | 7 |
_aMAT021000 _2bisacsh |
|
072 | 7 |
_aMAT006000 _2bisacsh |
|
082 | 0 | 4 |
_a518 _223 |
100 | 1 |
_aWahlbin, Lars B. _eauthor. |
|
245 | 1 | 0 |
_aSuperconvergence in Galerkin Finite Element Methods _h[electronic resource] / _cby Lars B. Wahlbin. |
260 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c1995. |
|
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c1995. |
|
300 |
_aXII, 172 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1605 |
|
505 | 0 | _aSome one-dimensional superconvergence results -- Remarks about some of the tools used in Chapter 1 -- Local and global properties of L 2-projections -- to several space dimensions: some results about superconvergence in L 2-projections -- Second order elliptic boundary value problems in any number of space dimensions: preliminary considerations on local and global estimates and presentation of the main technical tools for showing superconvergence -- Superconvergence in tensor-product elements -- Superconvergence by local symmetry -- Superconvergence for difference quotients on translation invariant meshes -- On superconvergence in nonlinear problems -- 10. Superconvergence in isoparametric mappings of translation invariant meshes: an example -- Superconvergence by averaging: mainly, the K-operator -- A computational investigation of superconvergence for first derivatives in the plane. | |
520 | _aThis book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced. The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aGlobal analysis (Mathematics). | |
650 | 0 | _aNumerical analysis. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aNumerical Analysis. |
650 | 2 | 4 | _aAnalysis. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783540600114 |
786 | _dSpringer | ||
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1605 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/BFb0096835 |
942 |
_2EBK1746 _cEBK |
||
999 |
_c31040 _d31040 |