000 02391nam a22004575i 4500
001 978-3-540-49103-3
003 DE-He213
005 20160624101831.0
007 cr nn 008mamaa
008 121227s1994 gw | s |||| 0|eng d
020 _a9783540491033
_9978-3-540-49103-3
024 7 _a10.1007/BFb0074026
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aHerzog, Bernd.
_eauthor.
245 1 0 _aKodaira-Spencer Maps in Local Algebra
_h[electronic resource] /
_cby Bernd Herzog.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1994.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c1994.
300 _aXVIII, 182 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1597
505 0 _aRing filtrations -- Basic lemmas -- Tangential flatness under base change -- Relation to flatness -- Distinguished bases -- Hilbert series -- Flatifying filtrations -- Kodaira-Spencer maps -- Inequalities related with flat couples of local rings -- On the local rings of the Hilbert scheme.
520 _aThe monograph contributes to Lech's inequality - a 30-year-old problem of commutative algebra, originating in the work of Serre and Nagata, that relates the Hilbert function of the total space of an algebraic or analytic deformation germ to the Hilbert function of the parameter space. A weakened version of Lech's inequality is proved using a construction that can be considered as a local analog of the Kodaira-Spencer map known from the deformation theory of compact complex manifolds. The methods are quite elementary, and will be of interest for researchers in deformation theory, local singularities and Hilbert functions.
650 0 _aMathematics.
650 0 _aAlgebra.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540587903
786 _dSpringer
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1597
856 4 0 _uhttp://dx.doi.org/10.1007/BFb0074026
942 _2EBK1736
_cEBK
999 _c31030
_d31030