000 02219nam a22004815i 4500
001 978-3-540-44443-5
003 DE-He213
005 20160624101819.0
007 cr nn 008mamaa
008 100806s2000 gw | s |||| 0|eng d
020 _a9783540444435
_9978-3-540-44443-5
024 7 _a10.1007/BFb0103864
_2doi
050 4 _aQA614-614.97
072 7 _aPBKS
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a514.74
_223
245 1 0 _aRiemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures
_h[electronic resource] /
_cedited by Lutz Habermann.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2000.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2000.
300 _aXIV, 122 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1743
505 0 _aPreliminaries -- A canonical metric for flat conformal manifolds -- Kleinian groups and moduli spaces -- Asymptotics: The flat case -- Generalization in low dimensions -- The moduli space of all conformal structures.
520 _aThis monograph deals with recent questions of conformal geometry. It provides in detail an approach to studying moduli spaces of conformal structures, using a new canonical metric for conformal structures. This book is accessible to readers with basic knowledge in differential geometry and global analysis. It addresses graduates and researchers.
650 0 _aMathematics.
650 0 _aGlobal analysis.
650 0 _aGlobal differential geometry.
650 1 4 _aMathematics.
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
650 2 4 _aDifferential Geometry.
700 1 _aHabermann, Lutz.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540679875
786 _dSpringer
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1743
856 4 0 _uhttp://dx.doi.org/10.1007/BFb0103864
942 _2EBK1252
_cEBK
999 _c30546
_d30546