Asymptotic Combinatorics with Applications to Mathematical Physics [electronic resource] : A European Mathematical Summer School held at the Euler Institute, St. Petersburg, Russia July 9–20, 2001 / edited by Anatoly M. Vershik, Yuri Yakubovich.

Contributor(s): Vershik, Anatoly M [editor.] | Yakubovich, Yuri [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Mathematics ; 1815Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2003Description: X, 250 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540448907Subject(s): Mathematics | Group theory | Functional analysis | Differential equations, partial | Combinatorics | Distribution (Probability theory) | Mathematics | Combinatorics | Group Theory and Generalizations | Functional Analysis | Partial Differential Equations | Probability Theory and Stochastic ProcessesAdditional physical formats: Printed edition:: No titleDDC classification: 511.6 LOC classification: QA164-167.2Online resources: Click here to access online
Contents:
Random matrices, orthogonal polynomials and Riemann — Hilbert problem -- Asymptotic representation theory and Riemann — Hilbert problem -- Four Lectures on Random Matrix Theory -- Free Probability Theory and Random Matrices -- Algebraic geometry,symmetric functions and harmonic analysis -- A Noncommutative Version of Kerov’s Gaussian Limit for the Plancherel Measure of the Symmetric Group -- Random trees and moduli of curves -- An introduction to harmonic analysis on the infinite symmetric group -- Two lectures on the asymptotic representation theory and statistics of Young diagrams -- III Combinatorics and representation theory -- Characters of symmetric groups and free cumulants -- Algebraic length and Poincaré series on reflection groups with applications to representations theory -- Mixed hook-length formula for degenerate a fine Hecke algebras.
In: Springer eBooksSummary: At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library
IMSc Library
Link to resource Available EBK1289

Random matrices, orthogonal polynomials and Riemann — Hilbert problem -- Asymptotic representation theory and Riemann — Hilbert problem -- Four Lectures on Random Matrix Theory -- Free Probability Theory and Random Matrices -- Algebraic geometry,symmetric functions and harmonic analysis -- A Noncommutative Version of Kerov’s Gaussian Limit for the Plancherel Measure of the Symmetric Group -- Random trees and moduli of curves -- An introduction to harmonic analysis on the infinite symmetric group -- Two lectures on the asymptotic representation theory and statistics of Young diagrams -- III Combinatorics and representation theory -- Characters of symmetric groups and free cumulants -- Algebraic length and Poincaré series on reflection groups with applications to representations theory -- Mixed hook-length formula for degenerate a fine Hecke algebras.

At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India

Powered by Koha