Amazon cover image
Image from Amazon.com
Image from Google Jackets

Local Function Spaces, Heat and Navier–Stokes Equations [electronic resource] / Hans Triebel

By: Contributor(s): Material type: TextTextSeries: EMS Tracts in Mathematics (ETM) ; 20Publisher: Zuerich, Switzerland : European Mathematical Society Publishing House, 2013Description: 1 online resource (241 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783037196236
Subject(s): Other classification:
  • 46-xx | 35-xx | 42-xx
Online resources: Summary: In this book a new approach is presented to exhibit relations between Sobolev spaces, Besov spaces, and Hölder–Zygmund spaces on the one hand and Morrey–Campanato spaces on the other. Morrey–Campanato spaces extend the notion of functions of bounded mean oscillation. These spaces play an important role in the theory of linear and nonlinear PDEs. Chapters 1–3 deal with local smoothness spaces in Euclidean n-space based on the Morrey–Campanato refinement of the Lebesgue spaces. The presented approach relies on wavelet decompositions. This is applied in Chapter 4 to Gagliardo–Nirenberg inequalities. Chapter 5 deals with linear and nonlinear heat equations in global and local function spaces. The obtained assertions about function spaces and nonlinear heat equations are used in Chapter 6 to study Navier–Stokes equations. The book is addressed to graduate students and mathematicians having a working knowledge of basic elements of (global) function spaces, and who are interested in applications to nonlinear PDEs with heat and Navier–Stokes equations as prototypes.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Home library Call number Materials specified URL Status Date due Barcode
IMSc Library Link to resource Available EBK13836

Restricted to subscribers:

http://www.ems-ph.org/ebooks.php

In this book a new approach is presented to exhibit relations between Sobolev spaces, Besov spaces, and Hölder–Zygmund spaces on the one hand and Morrey–Campanato spaces on the other. Morrey–Campanato spaces extend the notion of functions of bounded mean oscillation. These spaces play an important role in the theory of linear and nonlinear PDEs. Chapters 1–3 deal with local smoothness spaces in Euclidean n-space based on the Morrey–Campanato refinement of the Lebesgue spaces. The presented approach relies on wavelet decompositions. This is applied in Chapter 4 to Gagliardo–Nirenberg inequalities. Chapter 5 deals with linear and nonlinear heat equations in global and local function spaces. The obtained assertions about function spaces and nonlinear heat equations are used in Chapter 6 to study Navier–Stokes equations. The book is addressed to graduate students and mathematicians having a working knowledge of basic elements of (global) function spaces, and who are interested in applications to nonlinear PDEs with heat and Navier–Stokes equations as prototypes.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India