Amazon cover image
Image from Amazon.com

Lie algebras graded by the root systems BC_r, r \ge 2 / [electronic resource] Bruce Allison, Georgia Benkart, Yun Gao.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society ; v. 751Publication details: Providence, R.I. : American Mathematical Society, c2002.Description: 1 online resource (ix, 158 p. : ill.)ISBN:
  • 9781470403447 (online)
Subject(s): Additional physical formats: Lie algebras graded by the root systems BC_r, r \ge 2 /DDC classification:
  • 510 s 512/.55 21
LOC classification:
  • QA3 .A57 no. 751
Online resources:
Contents:
I. Introduction II. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra, $r \geq 3$ (excluding type $\mathrm {D}_3$) III. Models for $\mathrm {BC}_r$-graded Lie algebras, $r \geq 3$ (excluding type $\mathrm {D}_3$) IV. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3$ V. Central extensions, derivations and invariant forms VI. Models of $\mathrm {BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3$ VII. Appendix: Peirce decompositions in structurable algebras
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library IMSc Library Link to resource Available EBK13204

On t.p."[greater than or equal to]" appears as the greater than or equal to symbol.

Includes bibliographical references (p. 156-158).

I. Introduction II. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra, $r \geq 3$ (excluding type $\mathrm {D}_3$) III. Models for $\mathrm {BC}_r$-graded Lie algebras, $r \geq 3$ (excluding type $\mathrm {D}_3$) IV. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3$ V. Central extensions, derivations and invariant forms VI. Models of $\mathrm {BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3$ VII. Appendix: Peirce decompositions in structurable algebras

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012

Mode of access : World Wide Web

Description based on print version record.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India