Uniform rectifiability and quasiminimizing sets of arbitrary codimension / [electronic resource] Guy David, Stephen Semmes.
Material type:
TextSeries: Memoirs of the American Mathematical Society ; v. 687Publication details: Providence, R.I. : American Mathematical Society, 2000.Description: 1 online resource (viii, 132 p. : ill.)ISBN: - 9781470402785 (online)
- 510 s 516.3/62 21
- QA3 .A57 no. 687 QA644
E-BOOKS
| Home library | Call number | Materials specified | URL | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
| IMSc Library | Link to resource | Available | EBK13140 |
"March 2000, volume 144, number 687 (end of volume)."
Includes bibliographical references (p. 131).
0. Introduction 1. Quasiminimizers 2. Uniform rectifiability and the main result 3. Lipschitz projections into skeleta 4. Local Ahlfors-regularity 5. Lipschitz mappings with big images 6. From Lipschitz functions to projections 7. Regular sets and cubical patchworks 8. A stopping-time argument 9. Proof of main Lemma 8.7 10. Big projections 11. Restricted and dyadic quasiminimizers 12. Applications
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012
Mode of access : World Wide Web
Description based on print version record.
There are no comments on this title.