Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces / [electronic resource] Y.S. Han, E.T. Sawyer.
Material type:
TextSeries: Memoirs of the American Mathematical Society ; v. 530Publication details: Providence, R.I. : American Mathematical Society, 1994.Description: 1 online resource (vi, 126 p. : ill.)ISBN: - 9781470401092 (online)
- 510 s 515/.2433 20
- QA3 .A57 no. 530 QA403.5
E-BOOKS
| Home library | Call number | Materials specified | URL | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
| IMSc Library | Link to resource | Available | EBK12983 |
"July 1994, volume 110, number 530 (fifth of 6 numbers)."
Includes bibliographical references (p. 125-126).
1. Introduction 2. $T^{-1}_N$ is a Calder�on-Zygmund operator 3. The Calder�on-type reproducing formula on spaces of homogeneous type 4. The Besov and Triebel-Lizorkin spaces on spaces of homogeneous type 5. The T1 theorems for $\dot {B}^{\alpha , q}_p$ and $\dot {F}^{\alpha , q}_p$ 6. Atomic decomposition of $\dot {B}^{\alpha , q}_p$ and $\dot {F}^{\alpha , q}_p$ 7. Duality and interpolation of $\dot {B}^{\alpha , q}_p$ and $\dot {F}^{\alpha , q}_p$
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012
Mode of access : World Wide Web
Description based on print version record.
There are no comments on this title.