On $K_*(Z/n)$ and $K_*(F_q[t]/(t^2)$ / [electronic resource] Janet E. Aisbett, Emilio Lluis-Puebla, and Victor Snaith ; with an appendix by Christophe Soul�e.
Material type:
- 9781470407421 (online)
- 510 s 512/.55 19
- QA3 .A57 no. 329 QA612.33

Current library | Home library | Call number | Materials specified | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
IMSc Library | IMSc Library | Link to resource | Available | EBK12782 |
Includes bibliographical references.
On $K_3(Z/p^n)$ and $K_4(Z/p^n)$ (Janet E. Aisbett) On $K_3(\mathbb {F}_{p^\ell }[t]/(t^2))$ and $K_3(Z/9)$, $p$ an odd prime (Emilio Lluis-Puebla) On $K_3$ of dual numbers (Victor Snaith) Appendix. Homological stability of the Steinberg group over the integers (C. Soul�e)
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012
Mode of access : World Wide Web
Description based on print version record.
There are no comments on this title.