Amazon cover image
Image from Amazon.com

ZZ/2 - Homotopy Theory / M. C. Crabb.

By: Material type: TextTextSeries: London Mathematical Society Lecture Note Series ; no. 44 | London Mathematical Society Lecture Note Series ; no. 44.Publisher: Cambridge : Cambridge University Press, 1980Description: 1 online resource (136 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780511662690 (ebook)
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 514/.24 19
LOC classification:
  • QA612.7  .C7
Online resources: Summary: This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest.
Item type: E-BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Current library Home library Call number Materials specified URL Status Date due Barcode
IMSc Library IMSc Library Link to resource Available EBK12069

Title from publisher's bibliographic system (viewed on 16 Oct 2015).

This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India