Amazon cover image
Image from Amazon.com
Image from Google Jackets

An introduction to the theory of numbers

By: Contributor(s): Material type: TextTextLanguage: English Series: Oxford science publicationsPublication details: New York Oxford University Press 1979Edition: 5th edDescription: xvi, 435p. illISBN:
  • 0195670337 (PB)
Subject(s):
Contents:
1. The Series of Primes (1) 2. The Series of Primes (2) 3. Farey Series and a Theorem of Minkowski 4. Irrational Numbers 5. Congruences and Residues 6. Fermat's Theorem and its Consequences 7. General Properties of Congruences 8. Congruences to Composite Moduli 9. The Representation of Numbers by Decimals 10. Continued Fractions 11. Approximation of Irrationals by Rationals 12. The Fundamental Theorem of Arithmetic in k(l), k(i), and k(p) 13. Some Diophantine Equations 14. Quadratic Fields (1) 15. Quadratic Fields (2) 16. The Arithmetical Functions ø(n), µ(n), *d(n), *s(n), r(n) 17. Generating Functions of Arithmetical Functions 18. The Order of Magnitude of Arithmetical Functions 19. Partitions 20. The Representation of a Number by Two or Four Squares 21. Representation by Cubes and Higher Powers 22. The Series of Primes (3) 23. Kronecker's Theorem 24. Geometry of Numbers
Summary: This is the fifth edition of a work (first published in 1938) which has become the standard introduction to the subject. The book has grown out of lectures delivered by the authors at Oxford, Cambridge, Aberdeen, and other universities. It is neither a systematic treatise on the theory ofnumbers nor a 'popular' book for non-mathematical readers. It contains short accounts of the elements of many different sides of the theory, not usually combined in a single volume; and, although it is written for mathematicians, the range of mathematical knowledge presupposed is not greater thanthat of an intelligent first-year student. In this edition the main changes are in the notes at the end of each chapter; Sir Edward Wright seeks to provide up-to-date references for the reader who wishes to pursue a particular topic further and to present, both in the notes and in the text, areasonably accurate account of the present state of knowledge.
Item type: BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Home library Call number Materials specified Status Date due Barcode
IMSc Library 511 HAR (Browse shelf(Opens below)) Available 61566

Includes index

Includes bibliography (p. 417-419) and references.

1. The Series of Primes (1)
2. The Series of Primes (2)
3. Farey Series and a Theorem of Minkowski
4. Irrational Numbers
5. Congruences and Residues
6. Fermat's Theorem and its Consequences
7. General Properties of Congruences
8. Congruences to Composite Moduli
9. The Representation of Numbers by Decimals
10. Continued Fractions
11. Approximation of Irrationals by Rationals
12. The Fundamental Theorem of Arithmetic in k(l), k(i), and k(p)
13. Some Diophantine Equations
14. Quadratic Fields (1)
15. Quadratic Fields (2)
16. The Arithmetical Functions ø(n), µ(n), *d(n), *s(n), r(n)
17. Generating Functions of Arithmetical Functions
18. The Order of Magnitude of Arithmetical Functions
19. Partitions
20. The Representation of a Number by Two or Four Squares
21. Representation by Cubes and Higher Powers
22. The Series of Primes (3)
23. Kronecker's Theorem
24. Geometry of Numbers

This is the fifth edition of a work (first published in 1938) which has become the standard introduction to the subject. The book has grown out of lectures delivered by the authors at Oxford, Cambridge, Aberdeen, and other universities. It is neither a systematic treatise on the theory ofnumbers nor a 'popular' book for non-mathematical readers. It contains short accounts of the elements of many different sides of the theory, not usually combined in a single volume; and, although it is written for mathematicians, the range of mathematical knowledge presupposed is not greater thanthat of an intelligent first-year student. In this edition the main changes are in the notes at the end of each chapter; Sir Edward Wright seeks to provide up-to-date references for the reader who wishes to pursue a particular topic further and to present, both in the notes and in the text, areasonably accurate account of the present state of knowledge.

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India