Primes of the form x² + ny² : Fermat, class field theory, and complex multiplication
Material type:
- 0471506540 (HB)

Current library | Home library | Call number | Materials specified | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|
IMSc Library | IMSc Library | 511.3/.5 COX (Browse shelf(Opens below)) | Available | 28446 |
Includes index
Includes bibliography (p. 335-341) and references.
This book studies when a prime p can be written in the form x2+ny2. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of p=x2+ny2. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields.
There are no comments on this title.