Amazon cover image
Image from Amazon.com

An introduction to the geometry of numbers

By: Material type: TextTextLanguage: English Series: Classics in mathematicsPublication details: New York Springer 1997Description: vii, 344p. illISBN:
  • 3540617884 (PB)
Subject(s):
Contents:
Chapter I. Lattices 1. Introduction 2. Bases and sublattices 3. Lattices under linear transformation 4. Forms and lattices 5. The polar lattice Chapter II. Reduction 1. Introduction 2. The basic process 3. Definite quadratic forms 4. Indefinite quadratic forms 5. Binary cubic forms 6. Other forms Chapter III. Theorems of Blichfeldt and Minkowski 1. Introduction 2. Blichfeldt's and Mnowski's theorems 3. Generalisations to non-negative functions 4. Characterisation of lattices 5. Lattice constants 6. A method of Mordell 7. Representation of integers by quadratic forms Chapter IV. Distance functions 1. Introduction 2. General distance-functions 3. Convex sets 4. Distance functions and lattices Chapter V. Mahler's compactness theorem 1. Introduction 2. Linear transformations 3. Convergence of lattices 4. Compactness for lattices 5. Critical lattices 6. Bounded star-bodies 7. Reducibility 8. Convex bodies 9. Speres 10. Applications to diophantine approximation Chapter VI. The theorem of Minkowski-Hlawka 1. Introduction 2. Sublattices of prime index 3. The Minkowski-Hlawka theorem 4. Schmidt's theorems 5. A conjecture of Rogers 6. Unbounded star-bodies Chapter VII. The quotient space 1. Introduction 2. General properties 3. The sum theorem Chapter VIII. Successive minima 1. Introduction 2. Spheres 3. General distance-functions Chapter IX. Packings 1. Introduction 2. Sets with V(/varphi) =n^2/Delta(/varphi) 3. Voronoi's results 4. Preparatory lemmas 5. Fejes Tóth's theorem 6. Cylinders 7. Packing of spheres 8. The proudctio of n linear forms Chapter X. Automorphs 1. Introduction 2. Special forms 3. A method of Mordell 4. Existence of automorphs 5. Isolation theorems 6. Applications of isolation 7. An infinity of solutions 8. Local methods Chapter XI. Ihomogeneous problems 1. Introduction 2. Convex sets 3. Transference theorems for convex sets 4. The producti of n linear forms
Summary: From the reviews: "The work is carefully written. It is well motivated, and interesting to read, even if it is not always easy... historical material is included... the author has written excellent account of an interesting subject." Mathematical Gazette "A well-written, very thorough account ... Among the topi are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Item type: BOOKS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Current library Home library Call number Materials specified Status Date due Barcode
IMSc Library IMSc Library 511.48 CAS (Browse shelf(Opens below)) Available 47831

Includes index

Includes bibliography (p. 334-343) and references.

Chapter I. Lattices 1. Introduction 2. Bases and sublattices 3. Lattices under linear transformation 4. Forms and lattices 5. The polar lattice

Chapter II. Reduction 1. Introduction 2. The basic process 3. Definite quadratic forms 4. Indefinite quadratic forms 5. Binary cubic forms 6. Other forms

Chapter III. Theorems of Blichfeldt and Minkowski 1. Introduction 2. Blichfeldt's and Mnowski's theorems 3. Generalisations to non-negative functions 4. Characterisation of lattices 5. Lattice constants 6. A method of Mordell 7. Representation of integers by quadratic forms

Chapter IV. Distance functions 1. Introduction 2. General distance-functions 3. Convex sets 4. Distance functions and lattices

Chapter V. Mahler's compactness theorem 1. Introduction 2. Linear transformations 3. Convergence of lattices 4. Compactness for lattices 5. Critical lattices 6. Bounded star-bodies 7. Reducibility 8. Convex bodies 9. Speres 10. Applications to diophantine approximation

Chapter VI. The theorem of Minkowski-Hlawka 1. Introduction 2. Sublattices of prime index 3. The Minkowski-Hlawka theorem 4. Schmidt's theorems 5. A conjecture of Rogers 6. Unbounded star-bodies

Chapter VII. The quotient space 1. Introduction 2. General properties 3. The sum theorem

Chapter VIII. Successive minima 1. Introduction 2. Spheres 3. General distance-functions

Chapter IX. Packings 1. Introduction 2. Sets with V(/varphi) =n^2/Delta(/varphi) 3. Voronoi's results 4. Preparatory lemmas 5. Fejes Tóth's theorem 6. Cylinders 7. Packing of spheres 8. The proudctio of n linear forms

Chapter X. Automorphs 1. Introduction 2. Special forms 3. A method of Mordell 4. Existence of automorphs 5. Isolation theorems 6. Applications of isolation 7. An infinity of solutions 8. Local methods

Chapter XI. Ihomogeneous problems 1. Introduction 2. Convex sets 3. Transference theorems for convex sets 4. The producti of n linear forms

From the reviews: "The work is carefully written. It is well motivated, and interesting to read, even if it is not always easy... historical material is included... the author has written excellent account of an interesting subject." Mathematical Gazette "A well-written, very thorough account ... Among the topi are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly

There are no comments on this title.

to post a comment.
The Institute of Mathematical Sciences, Chennai, India