Groups Acting on Hyperbolic Space : Harmonic Analysis and Number Theory
Material type:
TextLanguage: English Series: Springer Monographs in MathematicsPublication details: Berlin Springer 1998Description: xv, 524pISBN: - 3540627456 (HB)
BOOKS
| Home library | Call number | Materials specified | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|
| IMSc Library | 515.1 ELS (Browse shelf(Opens below)) | Available | 36797 |
Includes index
Includes bibliography (p. 497-520) and references
1. Three-Dimensional Hyperbolic Space 2. Groups Acting Discontinuously on Three-Dimensional Hyperbolic Space 3. Automorphic Functions 4. Spectral Theory of the Laplace Operator 5. Spectral Theory of the Laplace Operator for Cocompact Groups 6. Spectral Theory of the Laplace Operator for Cofinite Groups 7. PSL(2) over Rings of Imaginary Quadratic Integers 8. Eisenstein Series for PSL(2) over Imaginary Quadratic Integers 9. Integral Binary Hermitian Forms 10. Examples of Discontinuous Groups.
This book deals with a broad range of topics from the theory of automorphic functions on three-dimensional hyperbolic space and its arithmetic, group-theoretic, and geometric ramifications. Starting off with several models of hyperbolic space and its group of motions the authors discuss the spectral theory of the Laplacian and Selberg's theory for cofinite groups. This culminates in explicit versions of the Selberg trace formula and the Selberg zeta-function. The interplay with arithmetic is demonstrated by means of the groups PSL (2) over rings of quadratic integers, their Eisenstein series and their associated Hermitian forms. A comprehensive chapter on concrete examples of arithmetic and non-arithmetic cofinite groups enhances the usefulness of this work for a wide audience of mathematicians.
There are no comments on this title.